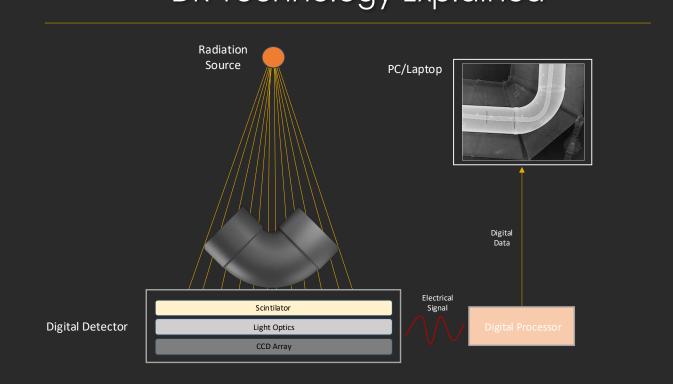


NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Bendable DR Panels


B-Series 1025 & 1043

Introduced by Joaquin Gonzalez Marketing Manager

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

DR Technology Explained

Hosted by **EGYPT**

Organized by ndtcorner.com

Calibration of DR panels

OFFSET CALIBRATION

- Evaluated with no radiation
- Different values for each pixel GV(t)
 - > GV_pixel_A(t) = a1*t + b1
 - > GV_pixel_B(t) = a2*t + b2
 - GV_pixel_N(t) = aN*t + bN
- After offset calibration:

b1 = b2 = bN

GAIN CALIBRATION

- Evaluated with radiation
- Different values for each pixel GV(t)
 - GV_pixelA(t) = al* t + bl
 - > GV_pixelB(t) = a2*t + b2
 - GV_pixel_N(t) = aN* t + bN
- After gain calibration:

a1 = a2 = aN

Hosted by **EGYPT**

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Inspection Images

Bendable detectors redefine RT imaging by achieving a constant radiation path length around curved surfaces. Their unique design enables secure attachment to pipes, ensuring a uniform X-Ray path length, the key to achieve image accuracy.

Flat Shooting

Bent Shooting

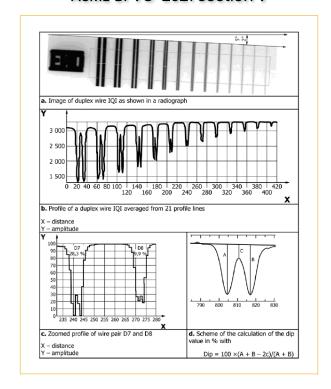

ISO 17636-2-2013

Table B.14 — Maximum image unsharpness for all techniques Class B

Image Quality Class B: Duplex wire ISO 19232-5					
Penetrated thickness w a mm	Minimum ICI value and maximum unsharpness (ISO 19232-5) ^b mm	Maximum basic spatial resolution (equivalent to wire thickness and spacing) ^b SR image mm			
w ≤ 1,5	D 13+ 0,08	0,04			
1,5 < w ≤ 4	D 13 0,10	0,05			
4 < w ≤ 8	D 12 0,125	0,063			
8 < w ≤ 12	D 11 0,16	0,08			
12 < w ≤ 40	D 10 0,20	0,10			
40 < w ≤ 120	D 9 0,26	0,13			
120 < w ≤ 200	D 8 0,32	0,16			
w > 200	D 7 0,40	0,20			

^{*} For double wall technique, single image, the nominal thickness r shall be used instead of the penetrated thickness w

ASME BPVC-2021 Section V

Hosted by **EGYPT**

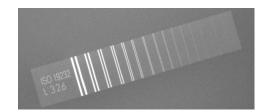
Organized by ndtcorner.com

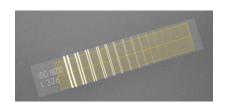
NDT-X CAIRO 2024 TECHNICAL CONFERENCE

ISO 17636-2-2013

Table B.7 — Wire IQI

Image quality class B							
Per	IQI value						
		to	1,5	W 19			
above	1,5	to	2,5	W 18			
above	2,5	to	4	W 17			
above	4	to	6	W 16			
above	6	to	8	W 15			
above	8	to	15	W 14			
above	15	to	25	W 13			
above	25	to	38	W 12			
above	38	to	45	W 11			
above	45	to	55	W 10			
above	55	to	70	W 9			
above	70	to	100	W 8			
above	100	to	170	W 7			
above	170	to	250	W 6			
above	250			W 5			


ASME BPVC-2021 Section V


Table T-276 IQI Selection							
	IQI						
	Source Side			Film Side			
Nominal Single-Wall Material Thickness Range, in. (mm)	Hole-Type Designation	Essential Hole	Wire-Type Essential Wire	Hole-Type Designation	Essential Hole	Wire-Type Essential Wir	
s0.25 (s6.4)	12	2T	5	10	2T	4	
>0.25 through 0.375 (>6.4 through 9.5)	15	2T	6	12	2T	5	
>0.375 through 0.50 (>9.5 through 12.7)	17	2T	7	15	2T	6	
>0.50 through 0.75 (>12.7 through 19.0)	20	2T	8	17	2T	7	
>0.75 through 1.00 (>19.0 through 25.4)	25	2 <i>T</i>	9	20	2T	8	
>1.00 through 1.50 (>25.4 through 38.1)	30	2T	10	25	2T	9	
>1.50 through 2.00 (>38.1 through 50.8)	35	2T	11	30	2T	10	
>2.00 through 2.50 (>50.8 through 63.5)	40	2T	12	35	2T	11	
>2.50 through 4.00 (>63.5 through 101.6)	50	2T	13	40	2T	12	
>4.00 through 6.00 (>101.6 through 152.4)	60	2T	14	50	2T	13	
>6.00 through 8.00 (>152.4 through 2032)	80	2 <i>T</i>	16	60	2T	14	
>8.00 through 10.00 (>2032 through 254.0)	100	2T	17	80	2T	16	
>10.00 through 12.00 (>254.0 through 304.8)	120	2T	18	100	2T	17	
>12.00 through 16.00 (>3048 through 406.4)	160	2T	20	120	2T	18	
>16.00 through 20.00 (>406.4 through 508.0)	200	2T	21	160	2T	20	

The IOI reading for system selection (see Annex C) applies for contact radiography. If geometric magnification technique (see 7.7) is used, the IOI reading shall be performed in the corresponding reference radiographs.

SBR Detector

Hosted by **EGYPT**

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Double-Wall Radiographic Technique

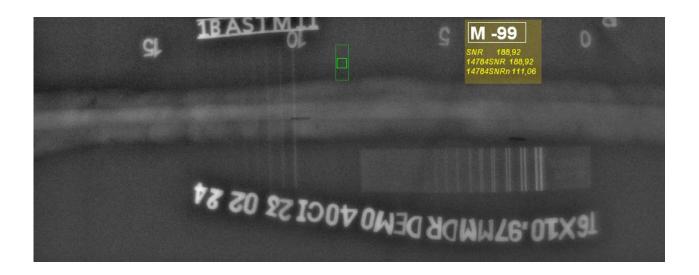
O.D.	Exposure Technique	Radiograph Viewing	Source-Weld-Film Arrangement		1	IQI	
			End View	Side View	Selection	Placement	Marker Placemen
Any	Double- Wall: T-271.2(a) at Least 3 Exposures 120 deg to Each Other for Complete Coverage	Single-Wall	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	tional cource cocation Film	T-276 and Table T-276	Source Side T-277.1(a) Film Side T-277.1(b)	Film Side T-275.1(b) (1)

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Hosted by **EGYPT**

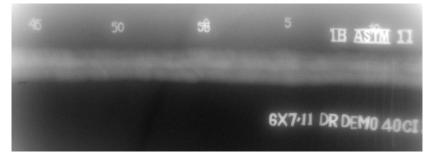
Organized by ndtcorner.com

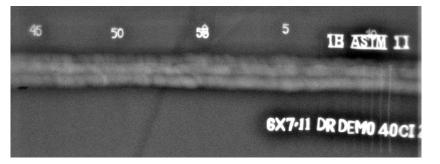
NDT-X CAIRO 2024 TECHNICAL CONFERENCE


Test Object 1: 6" 10.97 mm Pipe

SNRn → 111,06 (Based on EN 14784)

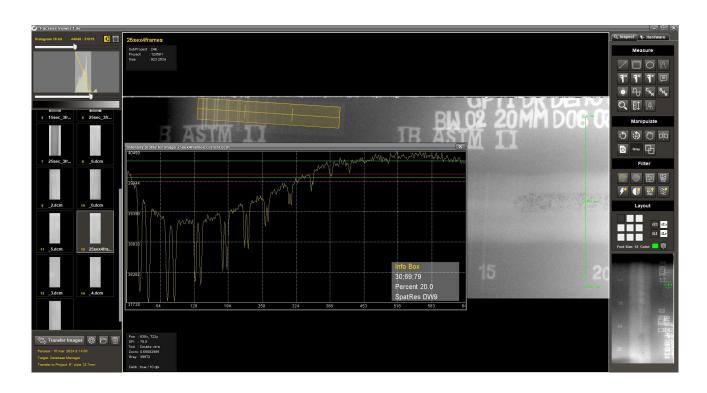
Hosted by **EGYPT**


Organized by ndtcorner.com

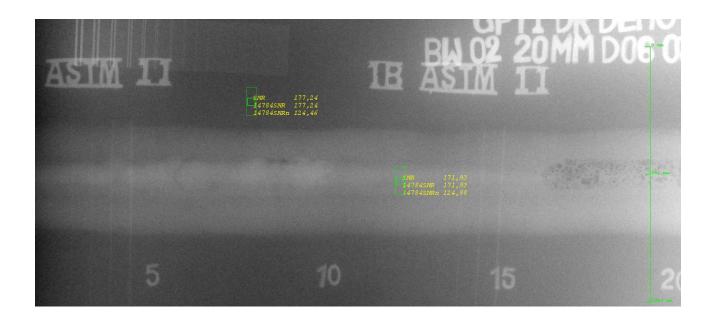

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Test Object 2: 6" 12 mm Pipe

Test Object 3: 20 mm Plate



Hosted by **EGYPT**


Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Hosted by **EGYPT**

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Discover our new pioneering bendable x-ray detectors: a leap in non-destructive testing. Specifically designed for non-destructive testing in pipe inspection, bendable detectors excel in superior resolution and accuracy by conforming to varied geometries. They uniquely enable comprehensive front and rear pipe inspection with a single detector

PACSESS Bendable DR Panels

Discover our new pioneering bendable x-ray detectors: a leap in non-destructive testing. Specifically designed for non-destructive testing in pipe inspection, bendable detectors excel in superior resolution and accuracy by conforming to varied geometries. They uniquely enable comprehensive front and rear pipe inspection with a single detector

