

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Protection Against Gamma Rays

Protection by awareness

Introduced by Eng. Talaat Haggag ASNT Level III Technical Director METEC

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

One day in Egypt

and caused the death of three and serious injuries to five from one family.

The villagers whispered to each other

Organized by ndtcorner.com

"There is a ghost who visited that house."

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

The cause of death and serious injuries was unknown.

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

At the hospital, doctors noticed some burns and thought that these cases might have been exposed to a high dose of radiation.

Organized by ndtcorner.com

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

With research and investigation

it was found that there is a pipeline work site near the village, and that site uses a gamma ray to conduct radiography tests for pipe welds

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Upon further investigation, inspectors found that one of the gamma ray cameras had been missing from the site for several days.

Hosted by EGYPT

Organized by ndtcorner.com

The scenario was as follows: After the end of the work day, the contractor's radiographers were supposed to store the gamma camera in a secure warehouse

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

but they stored it inside a pipe on site for use it at the next day.

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Someone saw the camera, stole it, took it to his house

and tried to open it to find out what was inside it.

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

This person and his family were exposed to high doses of radiation, which led to these deaths and serious injuries.

There is great follow-up, interest and attention at the highest level in the country regarding the mystery of the incident.

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

This incident took place in the village of Mit Halfa in June 2000, and this scenario or something similar exists worldwide.

Ionizing radiation are like a ghost because we cannot sense them with our five Senses But With awareness and knowledge, we can avoid it's harm and obtain

it's advantages.

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Another one

Hosted by EGYPT

Radiological Accident

Yanango, Peru, Radiological Accident

What Happened A non-authorized person unscrewed the screws of the security lock to free the radioactive source of a Gamma camera.

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

No key is needed to remove the source, it can be done with a screwdriver.

NDTX CAIRO EXPO 2024 Consequences:

A welder working with a radiographer at a hydroelectric plant picked up a lost iridium-192 industrial radiography source on 20 February 1999 and put it in his pocket for several hours.

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Consequences:

After about six hours the worker began experiencing pain in the back of the right thigh. He went home with the source, causing minor exposures to family members.

The radiographer, having discovered the source was missing about midnight, came to the welder's home at 1:00 AM on 21 February and helped discover the source.

The welder received an estimated whole body dose of 150 rem, although localized doses were much higher--up to 10,000 rad to one buttock--requiring amputation of one leg.

The result was

Over-radiation: 1 person Exposed: 18 person

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Effect on the leg the next day at 1:00 noon on February 21, 1999.

Impact on the leg 16 days after the accident 03-08-1999

Impact on the leg 70 days after the accident 1-5-1999

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

10-18-1999 Amputation of the leg

14-12-1999 Serious infection and contamination

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Common causes of accidents

Lack of awareness.

Procedures were not implemented.

Lack of regular oversight or inappropriate oversight

Common causes of accidents

Lack of training or inappropriate training

Lack of a safety and security program

Absence of Safety Culture.

Failure to follow safety and security procedures

Source inspection and measures were inadequate.

Failure to use the radiation survey meter

Equipment or device malfunction

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

43 accidents, including 9 accidents involving the general public or non-radiology workers.

Hosted by EGYPT

Organized by **ndtcorner.com**

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

We mention these incidents to spread awareness and take lessons learned to avoid the recurrence of such incidents

Aside from what is complex or academic, there is a role for specialists to raise awareness for the community, customers, contacts, and those close to danger areas.

Let's ask ourself some questions

Is there a radiation emergency plan?

Let's ask ourself some questions

Is the emergency plan being reviewed?

According to pre-determined periodic timings.

&

When new developments arise in operations, equipment, procedures,

&

When an accident or emergency occurs **outside** the work area, it can be used to develop the plan.

Let's protect ourselves against gamma rays By awareness & knowledge

Ionizing radiation

Gamma rays have the same properties as light, in addition to the property of penetrating materials, but light does not penetrate through opaque objects.

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Gamma rays and X-rays

Radiography

The rays penetrate the materials and reach a sensitive film that is exposed to the penetrating rays. It is then processed and exposed to a screen to see and interpret internal defects.

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiography is used to test many products such as welds, castings, and forgings.

Radiography camera and radioactive source

 NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiography camera

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiography camera

 Hosted by EGYPT
 Organized by ndtcorner.com

 NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiography camera and its accessories

Movement of the source from inside the gamma camera to the external cable

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiography site

If the radiographer cannot return the source to the gamma camera for any reason, What should he do? He should remain calm and withdraw to the barriers location, measure the dose rate, expand the barriers circle, if necessary, prevent entry to this area, and inform the site management to begin emergency procedures.

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

The radiographer should to put in his mind:

1- Move away from the source at once and keep other people away.

2- Calm down and think.

3- Establish a restricted area, and make sure no one approaches the source.

4- Call for help. Don't try to do anything yourself that you are not trained to do. A common requirement of emergency procedures is that you should contact your employer's Radiation Safety Officer (RSO) for help.

If the source comes out, the radiographer must use tweezers to pick up the radioactive source capsule from a distance and make the greatest possible distance between him and the source and do not let the source touch any part of his body under any circumstances when returning it to the device.

Radiation detection and measurement instruments

Since our senses cannot detect radiation, several devices are Commonly used in the field of radiography.

These devices are classified according to use and are called "survey meters" and "personnel monitoring devices."

Radiation detection and measurement instruments

Personnel monitoring devices are attached to the clothing of the radiation worker. These devices are designed to give cumulative readings of exposure

POCKET DOSIMETER

FILM BADGE

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Protection against radiation

There are three basic means of providing protection from radiation:

- 1. Time controlling the length of time a person is exposed to radiation.
- 2. Distance controlling the distance between personnel and the source.
- 3. Shielding placing absorbing materials between personnel and source.

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Time Do not stay near a radiography source or camera any longer than you have. The less time you spend at the radiation field, the fewer doses you will receive.

Time

The relationship of time to exposure is directly proportional.

The longer you stay in a radiation area, the more radiation exposure you receive.

Hosted by EGYPT		Organized by n	dtcorner.com
NDT-X	CAIRO 2024 T I	ECHNICAL CON	IFERENCE
Time			
Dose = dose rate X time			
This means if your			
survey meter reads 10	Radiatio	Time	
mrem per hour (100 µSv	mrem	μSv	(hour)
/ hr) you will receive 10	2.5	25	1⁄4
mrem in one hour, 5	5	50	1/2
mrem in ¹ / ₂ hour, and	10	100	1
2.5 mrem in $\frac{1}{4}$ hour and	20	200	2
so on, on the other	20	300	2
hand you will receive		400	5
20 mrem in 2 hours, 30	40	400	4

Hosted by EGYPT

Time

(A person receiving 10 mr in one hour would receive 5 in 8 hours.)

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Distance

Stay as far away from the source as you can

Radiation exposure decreases drastically as the distance from the source increases.

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Distance

The mathematical law known as the "inverse square law" states the relationship of distance to varying radiation intensity.

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Distance

The inverse square relationship means that if you double the distance, you will receive only 5 the amount of radiation.

if the survey meter reads 10 mrem/hr

(100 µSv/hr) at 100 feet (30.48 m) for

example: the dose rate at 50 feet will

be [10(100/50)2=40] 40 mrem per hour,

and the dose at 200 feet will be

Hosted by **EGYPT**

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

mrem per hour

Organized by ndtcorner.com

After measuring the dose rate, estimates can be made of the dose rates at different distances from the source.

Radiation	dose	dist	ance
mrem/hr	μSv	ft	m
40	400	50	15.24
10	100	100	30.48
2.5	25	200	60.96
0.625	6.25	400	121.92

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

In spite of, the dose rate is best determined using a reliable survey meter, it is so important to know how to estimate the dose if the survey meter is not immediately available or there is a problem to read with it or others, so in these instances we should assume that the source is in open area and use the gamma factor for this source to estimate the dose rate

(gamma factor for certain source indicates the absorbed dose rate at a distance unit from an activity unit of a gamma source) for example Ir-192 has a gamma factor 0.55 which is the absorbed dose rate in r/hr at 1 m from 1 Ci of gamma source equivalent to (5.9 r/hr /Ci/Feet or 0.13 msv/hr/GBq/m), here we can use the following relationship:

(gamma factor X source activity)

Dose rate =

(distance square).

(1 Ci = 37 GBq)

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Approximate distance required to reduce radiation level to 2 mrem/hr (20 µSv/hr) for Ir-192. Ir-192 has a gamma factor 0.55 which is the absorbed dose rate in r/hr at 1 m from 1 Ci of radionuclide this equivalent to (5.9 r/hr /Ci/Feet or 0.13 msv/hr/GBq/m)

Dose rate = (gamma factor X source activity) / (distance square).

Source	activity	Distance from the source		
Ci	GBq	ft	m	
100	3700	509	155	
50	1850	360	110	
40	1480	322	98	
30	1110	279	85	
20	740	228	70	
10	370	161	49	
5	185	114	35	
2	74	72	22	
1	37	51	15.5	
1/2	18.5	36	11	

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Shielding

Shielding is the third means of providing personnel safety.

The shielding material absorbs the radiation energy when the rays collide with electrons in the material.

Shielding

In practical applications, lead and concrete (or combinations) are the most common shielding materials.

Shielding

The Half-value layer is a thickness of material that will reduce radiation to one-half the original intensity.

The tenth-value layer is another standard that will reduce the radiation passing through that material to one-tenth the original intensity.

Isotope	Half V	alue La	yer (cms)	Tenth \	Value Layer (cms)		
	Lead	Iron	Concrete	Lead	Iron	Concrete	
¹⁹² lr	0.6	1.3	4.6	2.0	4.3	14.7	
⁶⁰ Co	1.2	2.0	6.6	4.0	6.9	20.6	

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Organized by ndtcorner.com

Shielding

% Radiation Reduction of certain material thickness = Number of HVL X HVL(thickness)

Or = Number of TVL X TVL(thickness)

Isotope	Half Value Layer (cms)			Tenth Value Layer (cms)		
	Lead	Iron	Concrete	Lead	Iron	Concrete
¹⁹² lr	0.6	1.3	4.6	2.0	4.3	14.7
⁶⁰ Co	1.2	2.0	6.6	4.0	6.9	20.6

HVL for concrete = 4.6 cm

To reduce the radiation from 100 μ Sv / hr to 50 μ Sv / hr use concrete shield with thickness 4.6 cm & to reduce it to 25 μ Sv / hr use concrete shield with thickness 9.2 cm

 Hosted by EGYPT
 Organized by ndtcorner.com

 NDT-X
 CAIRO
 2024
 TECHNICAL CONFERENCE

HVL for concrete = 4.6 cm

& to reduce it to 12.5 µSv / hr use concrete shield with thickness 5

TVL for concrete = 14.7 cm

To reduce the radiation from 100 μ Sv / hr to 10 μ Sv / hr use concrete shield with thickness 14.7 cm

TVL for concrete = 14.7 cm

& to reduce it to 1 µSv / hr use concrete shield with thickness 5

Collimators

One of the most effective means that you can use to reduce the radiation dose to yourself and others is by using collimators.

Hosted by EGYPT

NDT X

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Collimators are small pieces of lead, uranium, or tungsten that surrounds the source to absorb radiation not directed toward the object being radiographed. Collimators can achieve dose reductions of about 20 to 10,000 times for Iridium-192 for example.

Hosted by EGYPT

Conclusion

First of all always treat gamma radiation with respect. Do not touch your source during test process, it will cause radiation burns in second if held in hand. Never point your source at yourself or at anyone else when the shutter is open. Don't be hero, follow the procedures, restrict and post the area down to the 2 mrem/hr (20 μ Sv/hr) level, attempt to determine the actual exposure by calculation if beyond the survey meter range.

Hosted	bv	E	G١	P1
1100104	~ ,	-	<u> </u>	

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Lower your dose using time, distance, and shielding factors. Bear in your mind that any time radiation exposure is received unnecessarily, this exposure is considered to be excessive whether or not it exceeds the allowable limits. It should be recommended that the limits given in this presentation are subject to change at any time based on studies and researches.

Refer to the regulations in force for radiation protection in the country (or state) in which it is to be used. Remember that radioactive sources are regulated substances, it means that their import, export, providing, transport, handling and elimination are managed by legislative texts, so allows refer to local laws (ex. United States Nuclear regulatory Commission (USNRC)).

Hosted by EGYPT

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radiation hazard warning signs Hazardous levels of ionizing radiation are signified by the trefoil sign on a yellow background. These are usually posted at the boundary of a radiation controlled area or in any place where radiation levels are significantly above background due to human intervention.

Suitable Sign for General Awareness of Radiation Area (New version starting from Feb. 2007)

Hosted by EGYPT

PACKAGE LABELS

All shipments of radioactive material must bear two identifying warning labels affixed to opposite sides of the outer package. Three different labels (White-I, Yellow-II, or Yellow-III) are used for packages of radioactive material. The United Nations hazard class "7" appears on all radioactive material labels. The standard label size is approximately 4 x 4 inches

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radioactive White-I Almost no radiation 0.5 mR/hr (0.005 mSv/h) maximum on surface Transport Index: 0

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radioactive Yellow-II Low radiation levels 50 mR/hr (0.5 mSv/h) maximum on surface 1 mR/hr maximum at one meter Transport Index: 0 – 1

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Radioactive Yellow-III Higher radiation levels 200 mR/hr (2 mSv/h) maximum on surface 10 mR/hr maximum at one meter Transport Index: 1 - 10

Hosted by EGYPT

Overview of new and old units

	SI –u	SI – units Formerly used Convers		Conversion	
Designation of quantity	Name	Unit Designation	Name	Unit Designation	Old to SI
Activity (A)	Becquerel (Bq)	1/s*	Curie	Ci	1 Ci = 37 GBq
Ionization dose rate	Coulomb (C)	C/kg	Röntgen	R	1 R=2.58 x 10 ⁻⁴ C/kg
Ionization dose	Coulomb (C)	C/kg.s		R/s	
	Ampère (A)	or A/kg			
Absorbed energy	Gray	J/kg	Rad	Rad	1 Rad = 0.01 Gy
dose (D)	(Gy)				
Equivalent dose (H)	Sievert	J/kg	Rem	Rem	1 Rem = 0.01 Sv
H=D x RBE**	(Sv)				

Hosted by EGYPT

NDTX

Organized by ndtcorner.com

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

(1.0 rem =1000 mrem and 1.0 Sv =1000 mSv = 100 rem)

1 nCi	1 μCi	1 mCi	1 Ci	10 Ci
37 Bq	37 kBq	37 MBq	37 GBq	37 TBq

(1Gy =100 rad =100 cGy)

Law No. 7 of 2010
It is not permissible to grant a personal license to practice any activity that results in exposure to ionizing radiation unless appropriate qualifications and training are obtained.
The law also requires the licensee to notify the Nuclear and Radiological Regulatory Authority in writing immediately upon becoming aware of the loss or theft of any shipment containing radioactive materials.

القانون رقم 7 لسنة 2010 ولا يجوز منح ترخيص شخصى لمزاولة اى نشاط يترتب عليه التعرض للاشعاعات المؤينة الابعد الحصول على التاهيل والتدريب المناسبين. كما يلزم القانون المرخص له بابلاغ هيئة الرقابة النووية والاشعاعية كتابة فور علمه بفقد او سرقة اية شحنة تحتوى على مواد مشعة.

Organized by ndtcorner.com

Hosted by **EGYPT**

Law No. 7 of 2010
According to Article 38, Clause
16, one of the obligations of the person licensed to practice nuclear or radiological activity is to spread the culture of nuclear security and safety among the facility's employees in all fields.
There are penalties in the law for violators of up to life imprisonment if the crime is committed or attempted for a terrorist purpose or through coercion or the threat of using weapons..... (Article 97).

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

القانون رقم 7 لسنة 2010 وطبقا للمادة 38 بند 16 فانه من التزامات المرخص له بممارسة نشاط نووى او اشعاعى نشر ثقافتى الامن والامان النوويين بين العاملين بالمنشاة فى كافة المجالات. وهناك عقوبات فى القانون للمخالفين وهناك عقوبات فى القانون للمخالفين الجريمة او الشروع فيها لغرض ارهابى او بالاكراه او بالتهديد باستخدام السلاح(مادة 97).

Hosted by EGYPT	Organized by ndtcorner.com	h
	NDT-X CAIRO 2024 TECHNICAL CONFERENCE	Ξ

We can detect lonizing radiation by

- A survey meters
- **B** our five senses
- C touch it
- D Gamma camera

Common cause/causes of accidents is/are

- A Lack of awareness
- **B** Procedures were not implemented
- **C** Lack of training
- D all of the above

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

- The difference between lonizing radiation and light is
- A they have the same properties
- **B** the lonizing radiation has the property

of penetrating materials

- **C** the lonizing radiation has not penetrate materials
- D the lonizing radiation does not penetrate through opaque objects.

If the radiographer cannot return the source to the gamma camera for any reason, and the source comes out the camera, What should he do?

- A Move away from the source at once and keep other people away.
- **B** Call employer's Radiation Safety Officer (RSO) for help
- C Pick up the radioactive source capsule with hand gloves and request help from his colleagues
- D A and B above

Organized by ndtcorner.com

Hosted by EGYPT

NDT-X CAIRO 2024 TECHNICAL CONFERENCE

Thank you

Eng. Talaat Haggag

WhatsApp +201006817622 thaggag00@yahoo.com