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ABSTRACT
The continuous growth of wind power technology makes condition 
monitoring of wind turbine components crucially important for their 
operational efciency. The main shaft bearings in wind turbines have 
been identiped as one of the most critical components in the system, 
especially with the ongoing increase in rotor size and weight. This 
increase made the 4-point suspension drivetrain more preferable. In 
this study, we present a novel approach for condition monitoring of 
the main shaft bearings in a 2 Megawatt wind turbine with 4-point 
suspension drivetrain using primarily acoustic emission (AE). The focus 
was on the analysis of time and frequency domains of the AE signal, 
where the dominant frequency of each AE hit was identiped and 
plotted back in the time domain to create the so-called dominant 
frequency map in specipc time intervals for each bearing. 
A comparison between the two dominant frequency maps of the 
two bearings gives valuable insights into the condition of the two 
bearings. The distinctive nature of the dominant frequency bands in 
the dominant frequency maps presented promising potential for this 
method. The presented method is straightforward and can be auto-
mated and then integrated into a planned predictive maintenance 
programme for this wind turbine.
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1. Introduction

With the rise of green energy, wind power has become the fastest-developing renewable 
energy in the world. As the Global Wind Report [1] shows, 2022 was another record year 
for wind installations and particularly for the fast-growing offshore wind sector. 
However, the report also points out that new installations must still quadruple by the 
end of this decade to achieve the goal of net zero emissions by 2050. The total global wind 
power capacity is now up to 837 GW, helping the world avoid over 1.2 billion tons of CO2 
annually [1].

The efficient operation of WTs heavily relies on the reliable performance of their 
critical components. Any failure of these components can lead to downtime and 
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maintenance costs, affecting the energy production efficiency. Bearings are considered to 
be one of the most critical components in any WT. Therefore, the timely detection of 
bearing conditions is very important for the optimal functioning of WTs. The failure of 
the main shaft bearings is one of the costliest operations. It may not happen as frequently 
as the failure of the gearbox bearings [2,3], as shown in Figure 1, but when it happens, it is 
more complicated. Moreover, looking at the research literature, we notice that CM of the 
main shaft bearings has not received similar attention as the CM of gearbox bearings in 
WTs, which is one of our main motivations for conducting this research.

De Azevedo et al. concluded in a review study [4] that the WT bearings should be 
monitored due to their high impact on downtime. They also summarised the challenges 
of CM systems and emphasised that there should be more papers describing the practical 
challenges and aspects of CM system methodologies to make implementations on wind 
farms easier and faster.

An AE-based method for CM of low-speed slew bearing was presented in another 
review paper by Caesarendra et al. [5]. The authors reviewed the use of AE on rolling 
element bearings and concluded that few work has been done on the application of 
AE for very low-speed bearings with naturally occurring damage. From their experi-
mental study on low-speed slew bearing, they concluded that counts, energy, dura-
tion, amplitude, ASL (average signal level) and RMS (root mean square) effectively 
identify significant changes in the bearing condition. They proposed a feature extrac-
tion method for the AE waveform signal using the LLE algorithm (Largest Lyapunov 
Exponent), then demonstrated that the LLE feature can detect the sign of failure 
earlier than the AE hit parameters. LLE has been applied to the vibration signal of 
low-speed slew bearings in another study [6] by Caesarendra et al., where the feature 
extraction has been explained in more details. The more samples used for the LLE 
input, the more accurate the results, but this requires more computation time. Since 
AE is sampled at high sampling rates, minimum samples for LLE input were 
necessary.

Figure 1. Failure rates and downtimes for diAerent subassemblies from WTs [2,3].
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In a commendable effort, Z. Liu and L. Zhang [7] reviewed the current CM & Fault 
Diagnosis (FD) achievements of large-scale WT bearings and they compared different 
research cases. In their concluding remarks, they mentioned the lack of research on the 
diagnosis of slow speed bearings. They distinctly concluded that most of the existing 
works on failure mode assessment of large-scale WT bearings were only validated with 
artificially seeded defects in idealised laboratory environments. Therefore, they suggested 
more reliable CM & FD methods and more evaluation of the diagnosis methods in field 
tests. In our research, we worked in accordance with these recommendations precisely.

In a review paper of CM techniques of WT main bearings, Gbshi S. et al. [8,9] 
summarised the strengths and limitations of all the available CM methods. They recom-
mended effective noise suppression algorithms and advanced signal-processing methods 
for discriminating vibration fault features in low frequency rotating components such as 
the WT main bearings. The authors also concluded that studies investigating modern 
techniques are very sparse in the literature. Therefore, more studies should be considered 
in this direction.

Zhipeng M. et al. [10] introduced an integrated monitoring scheme for the WT main 
bearings using AE. It is proposed for low-speed bearing fault diagnosis, where they 
developed a rotating speed estimation approach to specify the exact r.p.m., which is 
estimated from the AE signal itself. Then they constructed a model for what they called 
effective damage localisation to improve maintenance efficiency in practical applications. 
The authors concluded that their model is able to detect the incipient damage as well as 
determine the damage location, which will greatly improve the health management 
efficiency of the main bearings in wind farms.

The International Standardization Organization in its ISO16079–2:2020 standard 
states that multiple techniques exist for measuring high-frequency impacts by capturing 
stress waves generated from impacts between moving parts and surface imperfections. 
These techniques include ultrasound, shock pulse, acoustic emission, and stress wave 
analysis. Such methods are well suited for early detection of bearing failures, particularly 
in low-speed bearings [11]. As shown in Figure 2, which is regenerated depending on the 
standard ISO 16,079–2, there is a wide frequency range for detecting vibration-related 
failure modes on a WT. Our concern in this study is the first part of the range for 
detection of bearing faults, which spans between 4 Hz to about 100 Hz.

Even though detecting faults in low-speed bearings can be tricky to some extent, many 
studies have shown that AE is sensitive to low-speed bearing fault detection [5,12]. When 
compared with vibration, the received AE signal reflects the rapid release (transient) 
elastic waves caused by the sudden stress redistribution in solid material, which gives 
high sensitivity to detect early bearing defects [13]. This is the reason for adopting AE by 
many researchers to monitor the operating conditions of the low-speed bearing. In 
addition, Tang L. et al. proposed an algorithm based on time difference of arrival of 
AE signals for defect localisation detecting damage source localisation in large-size 
bearings [14].

M. Elforjani and Mba utilised AE signal to diagnose low-speed bearings and showed in 
more than one work [15–17] that AE energy can be reliable and sensitive for detecting 
incipient cracks in low-speed bearing. Additionally, Fuentes et al. [18] investigated the 
incipient damage in WT bearings. They used AE in practical sensing locations, and they 
constructed a probabilistic model to detect bearing sub-surface damage.

NONDESTRUCTIVE TESTING AND EVALUATION 3



The time domain analysis can be quite useful for low-speed applications, such as the 
low-speed shaft of the WT gearbox [19], the authors of the book confirm that AE has 
been proven able to detect faulty roller bearings at extremely low-speeds. They cited 
many studies that found AE parameters correlated with surface damage, such as pitting 
and scuffing, as well as with the generation and propagation of cracks.

While in the frequency domain, the dominant frequency (DF) of AE hits has been 
used in many studies recently as a parameter to investigate the micro-failure process of 
sandstones [20–22], rocks [23–26] (including granite [27] and marble [28,29]), asphalt 
[30], carbon/glass epoxy composites [31], and in welds [32]. However, to the best of our 
knowledge, DF has not yet been used in CM of machinery or energy assets, let alone in 
CM of bearings.

In summary, it can be concluded that, while vibration has traditionally been the 
predominant technique for monitoring rolling element bearings, particularly in WTs, 
the adoption of AE offers more comprehensive analyses of bearing condition and the 
potential to predict imminent defects before they appear in vibration signals. Recently, 
a trend to complement the AE analysis with vibration or other CM techniques has proved 
more inclusive and reliable, and it is becoming more popular among scholars [33].

While a substantial body of research exists on the use of AE for bearing analysis in 
general, its practical application on bearings in the field of wind energy remains limited 
to controlled laboratory environments under pre-defined conditions. This research gap 
highlights the need for implementation of AE-based CM of bearings in actual operating 
WT systems. By conducting field studies and collecting data directly from bearings in 
operational WTs, we can achieve a more accurate understanding of the practical limita-
tions, advantages, and applicability of AE-based CM of bearings in WTs.

To address this research gap, our study aims to advance the practical application of AE 
in the context of wind energy by conducting measurements in real-world WT settings, 
utilising wireless techniques to establish an internet connection to a PC inside the nacelle, 
which is connected to an AE analysing system. This approach is cost-effective and easy-to 
-apply, and it provides access to real-time turbine data from anywhere on any device with 
internet.

The main objective of this study is to investigate the condition of the main shaft 
bearings in a 4-point suspension drivetrain configuration of a 2-Megawatt WT. This 

Figure 2. Typical representation of frequency ranges for failure modes on a WT [11].
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configuration is characterised by having two bearings supporting the main shaft. We 
started a systematic analysis of the vibration signal that was received from one of the two 
monitored bearings and then applied a similar approach to the AE signal. The results 
from vibration analysis were validated and extended by the AE analysis.

More focus was put on the examination of AE signals in both time and frequency 
domains. AE parameters such as RMS and ASL were also used as a reference to give another 
perspective on the results. The analysis involved setting up a Post Processing Hit Detector 
(PPHD) to have the flexibility in specifying the parameters for detecting AE hits even in the 
offline mode. We transformed the AE signal using Fast Fourier Transform (FFT) to the 
frequency domain and then identified the DF of each AE hit that is detected by this PPHD. 
The DFs of the hits were then plotted on the time domain during specific time intervals to 
create the so-called DF map. While this technique has gained recognition in the field of 
geotechnical engineering, especially in recent years, it has not yet been adopted in mechanical 
applications, as shown in the literature review. We affirmed our findings and conclusions by 
overlaying many consecutive DF maps in one graph for each bearing to give a more 
comprehensive picture of the DFs for AE hits in each of the two bearings. The comparison 
between the two overlays of DF maps for the two monitored bearings gave the final 
judgement about the condition of the bearings. The use of DF maps showed distinct and well- 
defined frequency bands that enclosed groups of DFs of AE hits, which gives this method 
promising potential in the field of AE-based CM of bearings once the exact representation of 
these bands is established. This method is reliable and straightforward, which makes it 
possible to be automated and integrated in a predictive maintenance strategy.

The remaining sections of this paper are organised as follows: Section 2 presents the 
measurement setup, the equipment, and the data acquisition procedure, Section 3 
describes and explains the vibration and AE analyses, in Section 4 a discussion about 
the results is carried out, and Section 5 presents the conclusions.

2. Methods and equipment

The measurements are taking place in a real-life environment on a WT of the type VESTAS 
90/2.0 MW in South Moravia, the Czech Republic. This type of WTs with the 2-megawatt 
production is popular in that region, and it operates in a wind speed range between 4 and 25  
m/s. The drivetrain of this WT is of the 4-point suspension type, which is characterised by 
a main shaft supported by two separate roller bearings. In the 4-point suspension drivetrain, 
the weight forces, the yawing and nodding moments from the rotor are transmitted to the 
nacelle’s main frame, which means that the gearbox is protected against those effects.

The procedure of the measurement is shown in the schematic diagram in Figure 3. 
Where two AE sensors and one vibration sensor were attached to the main shaft bearings. 
The sensors are connected to the AE analyser, which sends the converted signals to a PC 
for data acquisition and storage. The data is then transferred via the internet to our lab 
PCs for further analyses.

2.1. The application of AE as a CM technique

AE is a well-established Non-Destructive Testing (NDT) technique that allows the 
detection, monitoring, and localisation of defects in materials. AE is defined as the 
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spontaneous release of localised strain energy in stressed material. This energy release 
can be due to micro-cracking in the material and can be recorded by transducers 
(sensors) attached to the material’s surface [34]. The high sensitivity of AE measure-
ments makes it susceptible to interference from the surrounding environment, but 
thanks to advances in measurement systems, the use of a bandpass filters effectively 
eliminates background noise and allows meaningful testing under normal conditions. 
The AE analyser (Zedo-Dakel) that we are using is equipped with two AE channels/ 
cards and one auxiliary input channel that measures parametric voltage input (this 
channel was connected to the vibration accelerometer). Figure 4 (Equipment) and 
Figure 5 (c) show the analyser fixed to the frame of the nacelle and connected to the 
mini-PC using an Ethernet cable. The analyser is also connected to the two AE 
sensors with coaxial cables. Each sensor contains an internal impedance converter 
and a preamplifier with a 35 dB gain. The sensitivity of the sensor is between 25 and 
600 kHz. AE sensor that is connected to channel A is fixed firmly to the lowest point 
on the housing of bearing A, and AE sensor that is connected to channel B is fixed 
firmly to the top of the housing of bearing B, as shown in the schematic diagram in 
Figure 3, Figure 4, and in Figure 5 (a) and (b).

Figure 3. Schematic diagram of the measurement.

Equipment 

Bearing B 
Bearing A 

Figure 4. Position of the measuring equipment inside the nacelle.
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The sampling frequency for frequency spectrum computation is 2 MHz. The fre-
quency bandwidth was limited by digital filters as follows: High-pass filter 20 kHz and 
Low-pass filter 500 kHz. The global measurement period for AE parameters was set to 1 
s, which is a suitable compromise for long-term measurements. Some basic configura-
tions on the AE analysis software included saving the full signal twice a day for a period of 
30 s, and simultaneously recording the full vibration signal for those 30 s (twice a day, at 
8:00:00 a.m. and at 04:00:00 p.m.).

As mentioned earlier, since our focus will be on the analysis of the frequency domain, 
we chose to use just two AE parameters, RMS and ASL. RMS is the most commonly used 
time-domain parameter of AE [35], and it is defined as: 

(c) 

Vibration and AE sensors on the 
housing of bearing B 

AE sensor on the lower half 
of the housing of bearing A 

Equipment 

Mini PC with a VNC 
server installed 

Constant electrical 
provision from the grid 

3G modem with a 
SIM card

AE Analyser with two 
AE channels and 

Vibration auxiliary input 

Bearing B Bearing A 

(a) (b) 

Figure 5. (a,b) Positions of AE sensors on the housings, (c) equipment for data acquisition, analysis and 
transmission from WT nacelle.
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Where 0T is the integration time constant, N is the number of discrete AE data within 
0T, and V(i) is the voltage values of the signal from the sensor.

The average signal level (ASL) is another commonly used AE parameter, 
defined as: 
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where t0 is the initial time, T is the integration time of the signal and N is the number of 
discrete AE data within the interval T. v(t) is the time-varying signal voltage.

Since we could not get information from the SCADA system of the WT, we applied 
our own real-time online monitoring system, by installing a mini PC (it has all the 
capabilities of a regular PC, but with compact design) connected to AE analyser inside the 
nacelle. They act as a local data acquisition unit, performing primary signal analysis and 
feature extraction processes. More demanding and advanced analyses are then performed 
on the extracted data after transmission via the internet to our laboratory computers.

To ensure seamless and secure data transmission, a 3G (third generation of digital 
mobile networks) internet connection was employed, by using a modem with a 3G SIM 
card connected to the PC, allowing continuous remote access to the mini PC within the 
WT’s nacelle. Furthermore, a VNC (Virtual Network Computing) server software was 
installed (RealVNC®) to establish a secure and encrypted connection between the PC and 
any VNC viewer.

It is important here to distinguish between the case of wind farms and individual 
isolated WTs. The use of a highly sophisticated SCADA system in the case of wind farms 
consisting of a large number of WTs pays off on the long run. While in the case of 
individual stand-alone WTs, utilising a VNC server with a reliable 3G connection, the 
monitoring process becomes significantly streamlined and cost-effective. This approach 
eliminates the need for a complex and resource-intensive SCADA, and it allows direct 
access to real-time turbine data from anywhere, on any device that has access to the 
internet. Therefore, we are not suggesting this application as a replacement of SCADA, 
but as a complementary application to reduce complexity when possible.

The vibration transducer (accelerometer) that we used is from the type IEPE 
(Integrated Electronics Piezo-Electro); it has a built-in integrated circuit with a charge 
to voltage converter. The accelerometer is connected to Analogue-to-Digital Converter 
(ADC) in the auxiliary card of the AE analyser. It has a sensitivity value of 97.6 [mV/(m/ 
s2)], and Bias = 11.5 [V]. The data that are received from the vibration transducer are raw 
acceleration. This signal is digitally processed and presented in the time domain, and 
then it is transformed to the frequency domain.

The sampling frequency of the vibration data is: Fs-v = 1000 Hz
The measurement procedure started in April 2022, and since then we have been 

monitoring and recording data about the condition of the main shaft bearings in the 
WT. Therefore, by the time of preparing this paper, we already have data for 1 year. We 
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divided the recorded data into weeks, so for each week we have a block of data ready to be 
analysed separately.

Figure 6 shows the recorded data for 2 weeks in April 2022, as an example. It 
includes some of the most relevant operation parameters of the WT, such as the wind 
speed, rotor rotation speed, and the produced power to the grid in Figure 6(c), as well 
as some of the AE parameters such as RMS and ASL from both channels A and B, in 
Figure 6(a,b), which show that RMS and ASL are very responsive to the changes of 
rotor speed. This is more obvious in the periods of shutdown, for maintenance or for 
safety reasons, like the one that took place for a few hours on the middle of the day 
on 7th of April, where we see how this shutdown was clearly reflected in the signal. 
With this regard, it is worth mentioning that these results were in alignment with the 
findings of Luis, F. et al. [36], even though they did their study on the gearbox 
bearings.

We then sliced each block of data into segments where the full data were recorded, 
which means that twice a day, each time segment consists of 25 s of fully recorded AE and 
vibration data, we call them time slices. We concentrated on analysing the time slices 
where the rotation of the rotor was at its highest. Because as it is shown in Figure 6(c), 
marked by red ellipses, it is obvious that at these times the signal was the strongest, and 
the AE parameters were at their highest values.

This fixed highest speed for the rotor is considered as an advantage for monitoring the 
main shaft bearings in WT because it helps fix one of the main parameters, which is the 
rotation speed, for a period of time as long as the wind speed is above its cut-out value, 

Figure 6. Operation data for the first two weeks in April 2022 (as an example). (a) RMS and ASL 
(aggregated) of AE from channel A. (b) RMS and ASL (aggregated) of AE from channel B. (c) WT 
operation parameters, rotor speed, wind speed, output power. Red ellipses are the places of the cut- 
out rotor speed, where data were picked to be analysed.
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which is 25 (m/s). In our case, the cut-out rotation speed was set at 14.9 rpm. Therefore, 
we applied all the analyses on the signals just in these cut-out periods.

The duration of one cycle during the cut-out speed is 60/14.9 u 4 s.

3. Results

3.1. Analysis of the vibration signal

The vibration signal was received from the accelerometer by ADC in the analyser, then to 
the software to be presented in the time domain, as shown in Figure 7, the fully recorded 
time slice (25 s) of the vibration data. It contains many overlapped signals from different 
sources, and a lot of noise, which we cannot distinguish. Therefore, we transform it to the 
frequency domain. To do this we use Welch's method, which is a method based on time 
averaging over short, modified periodograms that uses FFT for the estimation of power 
spectra.

We chose the overlap between Welch windows to be 50% and the size of each window 
to be equal to the sampling rate, which is 1000 points.

To apply Welch's method and get the power spectrum of the signal, we extracted the 
data from the time domain and read it on MatLab®. The result is shown in Figure 8. It 
shows the spectrum of frequencies of the signals that are combined in the vibration, and 
it distinguishes the frequencies that are dominant. We can tell from this figure that there 
are many signals received by the accelerometer with different frequencies, but the DF of 
vibration in this time interval is around 60 Hz.

The Y-axis in Figure 8 is in logarithmic scale, so we remove this logarithmicity of Y, to 
get a more definitive curve for the DFs in the signal, as shown in Figure 9.

We can see from Figure 9 that the fundamental frequency of the vibration signal is 
around 60 Hz, and we can see the smaller peaks at its harmonics, the 120 Hz and 180  
Hz. We can also see a peak at 0.25 Hz (=15 rpm), which is equal to the rotational 
speed of the main shaft. When comparing with the practical recommendations 
provided by [37–39], and with information from Figure 2 (from ISO16079–2) 
which tells that a vibration frequency between [4–100] Hz indicates a bearing fault, 
we can assume with confidence that there are defects in bearing B. However, since the 
bearing is still in operation and the measurement is still running, we cannot carry out 

Figure 7. Fully recorded 25 seconds of vibration signal in the time domain.
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physical inspections, which begs the need for extra investigation using different 
techniques; it is AE in our case.

120 

180 

60 

Figure 8. Power spectrum of the vibration signal using Welch estimate.

0.25 Hz    
� 1x RPM 

Figure 9. Spectrum after removing the logarithmicity of Y-axis.
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3.2. Reading the vibration spectrogram

The spectrogram is a visual representation of the spectrum of frequencies in a signal over 
time, i.e. it is a time-frequency representation of the signal. Technically, it is the 
magnitude squared of the short-time Fourier transform (STFT) of the signal. The 
produced spectrogram in Figure 10(a) shows the changes of frequencies over time, 
while the intensity of the yellow colour represents the power of the signal.

Figure 10(b) is the same spectrum as in Figure 8 rotated by 90 degrees, which was 
achieved by applying Welch method for PSD estimation (Later in the AE analyses, we 
adopted the Welch method alone, because it gives a specific number for the dominant 
frequency in a 2D graph). To find which timestamps contain the highest spectral power, 
we sum the power across all frequencies for each timestamp. As shown in Figure 11, we 
summed all the spectral power values at each timestamp from the spectrogram (a) to 
make up the graph (b) in the time domain. Then we specify the maximum 10 values of 
the sum of signal’s PSDs, or the 10 local maxima, as they are called in Figure 11(b). Then 
we superimpose those values back on the time domain, as shown in Figure 12.

When comparing Figures 12 with 7, we can see that some of the occurrences of the 
10 maxima of PSD sums take place at the times where there is sudden increase in the 
vibration amplitude, and some do not, those are buried in the noise, but their 
timestamps were exposed by this method. In addition, we notice from the distribution 
of the maxima of PSD in Figure 12 and from other figures for other time slices that 
the occurrences have a kind of patterned appearance. The pattern might not look 
consistent in one figure (in 25-s slice), the consistency is related more to the 
distribution and the appearance of at least one maximum PSD value every 4 s. 
When taking into consideration the previous discussion on Figure 9, this patterned 
appearance of PSD maxima supports our previous assumption of existing defects on 
the bearing raceways.

Figure 10. (a) Spectrogram of vibration signal, (b) with PSD of the signal.
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Figure 11. The spectrogram, with the sum of power densities extracted from it.

Figure 12. Superimposing the maximum 10 sums of PSDs on the time domain.
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3.3. Analysis of AE signal

We applied similar sequence of actions for the analysis of the AE signal that was received 
from both sensors fixed to the bearings. Those steps are shown in the diagram in 
Figure 13. It consists of signal acquisition in the time domain, transforming the signal 
to the frequency domain using FFT, and identifying the DF for each AE hit in the time 
slice to create a DF map for all AE hits in that time slice. Many AE parameters were also 
extracted, but we chose to present just the RMS in correlation with the DFs in the time 
domain, since RMS is the mostly used AE parameter according to the literature, and 
because we are aiming at a signal-based analysis rather than a parameter-based one.

Figure 14 Shows one AE hit in the time domain that is detected by a PPHD. We 
established the PPHD to get more versatility in determining the parameters for the AE hit 
detector, even on the recorded signal (offline). The main setup parameters for the PPHD are 
given in Table 1.

The signal is then transformed to the frequency domain using FFT, to create the power 
spectrum shown in Figure 15. From this figure, the frequency corresponding to the 
highest power in the power spectrum is defined as the dominant frequency of the 
waveform signal. We can see from Figure 15 that DF for this AE sample is around 
68 kHz.

Data acquisition and 
displaying in time domain

Transforming to Freq.
Domain by FFT

Specifying the 
Dominant Freq. (DF)

Plotting DFs in the 
time domain to 
create DF map

Overlaying a number of 
consecutive DF maps for 

affirmation

Removing 
logarithmicity

Extracting AE parameters 
(RMS, ASL, Energy …) Correlation

Figure 13. Sequence of steps for AE signal analysis.

Threshold

Risetime 
Duration (length) 

M
ax

-a
m

p.
 

Figure 14. AE sample hit from channel a.
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We apply the same process to each AE hit detected by the PPHD. The DFs for all the 
detected hits in one time slice were then collected in one graph as shown in Figure 16(a,b) 
which are called the DF maps for bearing A and B, respectively. Figure 16 also shows the 
RMS of AE from both channels A and B.

Figure 16(a) shows that all DFs of the PPHD hits from bearing A fall inside two bands 
(ranges), the first band is [33–36] kHz which is a narrow band (enclosed inside a blue 
rectangle on the figure), and the second band spans from [60–77] kHz (enclosed inside 
a dashed red rectangle).

Figure 16(b) shows that all DFs of the PPHD hits from bearing B fall inside almost the 
same two bands: a narrow band [33–36] kHz (inside a blue rectangle) and another band 
[60–77] kHz (inside a dashed red rectangle).

Table 1. The main setup parameters for the 
PPHD.

Parameter Value

Detection threshold 1 mV (60 dBAE)
Separation time 1 ms
Dead time 10 ms
Minimum hit length 1 us
Maximum hit length 500 ms
FFT Calculation method Welch estimate
Window size 8192
Window overlap 50%

Dominant Frequency (DF) 

Figure 15. Frequency domain of the AE hit shown in Figure 14.
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When comparing the two bands of DFs between the two bearings, we can see 
that the number of AE hits in the lower band is much bigger than the upper band 
and that most of the hits that have DFs in the lower frequency band [33–36] kHz 
are shared between the two bearings. They occur almost simultaneously or with 
minor shifts. However, by looking at the upper band of DFs [60–70] kHz, we can 
see that the number of hits differ greatly between the two bearings. Bearing 
B produces many more hits at these frequencies than bearing A. Bearing 
A produces hits at these frequencies just when RMS has an abrupt increase, and 
similar hits can be seen at these times from bearing B, as shown by the curved 
double-arrows on the figure.

On the other hand, when comparing the DFs of hits from both channels with 
the RMS from both channels in this time slice, we see some hits with similar DFs 
taking place even when the values of RMS are relatively low. This implies that 
RMS as an AE parameter does not capture or react to all the sources of the hits, 
so it cannot be depended upon solely for fully describing the condition of the 
monitored bearing.

Another intriguing aspect of the DFs from channel B is their patterned occurrence; 
they exhibit a patterned appearance where every 4–6 s there is at least one appearance of 
the maximum PSD. When taking into consideration the rotational speed of the shaft, 
which is about 4 s for one full rotation at the time of measurement, and considering the 
inevitable sliding effect of the rollers, we can assume that those DFs belong to hits that are 

Figure 16. Frequency domain of the AE hit shown in Figure 14.
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related to the rotation speed of the inner ring, and they are results of defects on the 
raceways.

We also see in Figure 16(b) a number of hits which were received just from channel B, 
whose DFs are in a band between [95–105] kHz (enclosed inside a dashed orange 
rectangle). They have no counterpart from channel A on Figure 16(a) or on any other 
DF map. Figure 17(a,b) is just another example of DF maps for bearings A and B, 
respectively, taken in different time slices. Figure 17(b) shows a group of hits with even 
higher DFs that range between [195–215] kHz (enclosed in a green rectangle). From 
figure 16(b) and 17(b) we can tell that those groups of hits that have the highest DFs are 
not correlated strictly to the RMS values.

3.4. Combining a number of subsequent DF maps

The preceding findings were observed in many other analysed time slices. 
Therefore, we produced the DF maps for a number of consecutive time slices in 
consecutive days and combined (overlaid) them in one graph for each bearing, as 
shown in Figures 18 and 19 for bearings A and B, respectively (Note: The samples 
of DF maps are not distributed regularly on the time axis, because the chosen time 
slices, where the rotation speed was fixed at its maximum, were not regularly 
distributed).

Figure 17. DF map for bearings a and B. (a) DFs of the PPHD hits from bearing A, (b) DFs of the PPHD 
hits from bearing B.
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The overlay of DF maps for bearing B in Figure 19 confirms the existence of the two 
bands of high DFs, [95–105] kHz and [195–215] kHz, on some consecutive DF maps. 
Those two high DF bands do not appear in any of the DF maps of bearing A.

4. Discussion

Our objective to advance the AE-based CM of the main shaft bearings in WTs led 
us to employ the DF of AE hits as a parameter to indicate the condition of the 
bearings. For this purpose, we produced DF maps for each bearing in different time 

Figure 18. The overlay of some consecutive DF maps for bearing A.

Figure 19. The overlay of some consecutive DF maps for bearing B.
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intervals, and then we overlaid many consecutive DF maps for each bearing in one 
graph to affirm the consistency of the results and to give a better overview of the 
condition of the bearing. In our case study, the comparison between the two 
overlays of DF maps over the same period gave a confirmation of the preceding 
vibration analysis that was carried out on bearing B, which indicated the existence 
of defects on the bearing raceways, and showed that it is in a worse condition than 
bearing A.

When comparing the two overlays of DF maps for the two bearings in Figures 18 and 
19, we see that the two high DF bands, [95–105] and [195–215] kHz, appear only in DF 
maps for bearing B and do not exist in DF maps for bearing A.

Combining this observation with the conclusion that we reached after the vibration 
analysis of bearing B (after Figure 12) gives more support to the presumption of the 
existence of defects on the raceways of bearing B. It also indicates that those defects are of 
different types and sizes.

Another observation is that the number of AE hits in the middle DF band [60–77] kHz 
for bearing B is bigger than the number of AE hits for bearing A in that frequency band. 
Those hits show patterned appearance, where each 4 s we see at least one hit. We suspect 
that this band of DFs is the most indicative of defects on the bearing raceways.

We also notice that both bearings have the highest number of AE hits in the lowest DF 
band [33–36] kHz, and we can indicate from the number of those hits and their 
distribution, that most of them are attributed to noise and external sources.

One of the frequent observations was also that the RMS, when compared to the 
occurrence of AE hits on DF maps, did not capture all the events, as seen in Figures 16 
and 17 and the discussion on them. Even though a substantial amount of research on AE- 
based CM of bearing considered AE parameters as credible indications of defects in 
bearings [5,16,18,36,40] to name a few. Our observations do not contradict with that, as 
seen in Figure 6, and as we stated when comparing our results to the model developed by 
Luis, F. et al. [36]. AE parameters are credible indications of defects, but adding DF of AE 
hits as a parameter will increase their credibility.

One fact that we should address is that the boundaries of DF bands are not strictly 
defined. We see from the overlays that there are some scattered hits, which have DF 
outside the defined DF bands, but they are non-repetitive, they appear randomly, so they 
are unlikely to be the result of defects in the cyclically rotating elements of the bearing.

Since the comparison between the two bearings was a key factor in the conclusion, we 
acknowledged that this approach is applicable only to the type of WTs that have two 
bearings supporting the main shaft, as in the 4-point suspension drivetrain. However, 
with the existence of enough historical data from similar configurations, this limitation 
could be mitigated. Another drawback is that the comparison leads to a relative conclu-
sion. Therefore, even though it confirmed that bearing B is in a worse condition than 
bearing A, it did not give an accurate description of the condition of bearing A, as long as 
the exact interpretation of the DF bands has not been known yet. In addition, we believe 
that utilising DF of AE hits in bearings CM research will contribute to establishing 
a reliable database that can be used to determine the possible causes of AE hits within 
each DF band. Another factor that contributed to this drawback (specifying the condition 
of bearing A) is the fact that we used only one vibration transducer attached to bearing B; 
this was due to the analyser being equipped with only one auxiliary card for the extra 
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parameter analysis. We will solve this limitation with the manufacturer for the upcoming 
measurements.

With regard to CM of bearings, combining the traditional vibration analysis with AE 
analysis has been popular in research, with concentration on the parameter-based 
analysis of the AE, applying many new techniques on the AE-extracted parameters. 
However, to the best of our knowledge, the DF of AE hits has not been explored yet as 
an indicator for CM of machinery or mechanical components, let alone of bearings, even 
though this technique has been gaining a lot of attention in fields like Geotechnical 
engineering, as shown in the literature review. To the extent that we find the statistical 
characteristics of DF of AE hits being examined in prior works [28,29], then these 
statistics have been utilised, depended upon, and extended in subsequent studies [21– 
23,25–27]. The only exception we were able to find was the work of Haneef et al. [32] 
when they used frequency centroid in their study on steel welds and they mentioned the 
DF of AE, but they did not use it the way we did in this work. Therefore, we can claim to 
be the first who used the DF of AE hits on bearings, accompanied by vibration analysis, 
and we intend to continue to use this technique in our future investigations.

In our work, unlike the studies that used the DF of AE hits, we added an extra step of 
affirming the consistency of our findings by overlaying many consecutive DF maps on 
one graph for each bearing to give a more comprehensive picture of the DFs for AE hits 
in each of the two bearings.

We also created a batch-processing programme for this function to simplify our current 
work, and to make it a basis for the planned future advancement of the automation of this 
process. Our future steps also include extending the application of our CM system to other 
WTs with varying service lifespans, which will enable us to conduct a comparative analysis 
of the results. We also have to improve our current signal processing procedure accordingly, 
which will help us develop advanced predictive maintenance strategies for different WTs.

Finally, we would like to initiate a call for further exploration and interest in the 
employment of DF of AE hits as a valuable parameter for AE-based CM of bearings, as it 
has shown promise and success in other fields. Its novel implementation in the realm of 
bearing CM requires more research and validation through collaborative efforts and 
interdisciplinary investigations.

5. Conclusion

In this work, we investigated the structural health of the two main shaft bearings in 
a 4-point suspension drivetrain configuration of a 2-Megawatt WT. Our investigation 
focused on examining and analysing AE signals emanating from both bearings in the 
time and frequency domains. Vibration analysis was also applied to one of the bearings and 
it led to the presumption that the smaller bearing B has developed defects on the raceways. 
The analysis of the AE signal confirmed this and showed that those defects are of different 
types and sizes. It demonstrated that bearing B is in a worse condition than the bigger 
bearing A.

Our analysis on the frequency domain of AE hits led to the creation of DF 
maps for each bearing. The DF map is a representation in the time domain of the 
DFs of all AE hits received from the PPHD in specific time intervals. Overlaying 
many DF maps over many consecutive intervals gave more confirmation of the 
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results and a more comprehensive view of the condition of the bearings. To the 
best of our knowledge, the principle of DF maps has not been used in the field of 
CM of bearings, and we believe it has promising potential in this field as 
a method for representing the condition of a bearing. It was apparent from the 
DF maps that the DFs of AE hits are grouped in well-defined bands. Those 
groups presumably represent different types and sizes of defects. The exact 
correlation between the sizes of the defects and the DFs requires further investi-
gation. An important observation was that AE parameters, such as RMS, did not 
completely correspond to the events that were represented by the occurrence of 
AE hits, which leads to the conclusion that AE parameters alone cannot be 
depended upon for the determination of the condition of a bearing. The compar-
ison between DF maps for both bearings, taken simultaneously, provided the basis 
for assessing the condition of the bearings. Implying that it is suitable only for 
drivetrain arrangements that is characterised by two bearings supporting the main 
shaft (which is the preferable drivetrain arrangement in big multi megawatt WTs). 
One of the advantages of this method is the simplicity, where all the Matlab® 
codes can be combined, automated and integrated into a CM system for the 
drivetrain of WTs and then for the development of a predictive maintenance 
strategy to mitigate the potential risks of such invaluable assets.

We also introduced an easy-to-apply method for continuous online monitoring of the 
main shaft bearings that is particularly useful in the case of stand-alone WTs. The 
method utilises a 3G connection and a VNC server. We have been using it reliably for 
more than a year for monitoring and recording data.
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